Search results for "Convex geometry"
showing 7 items of 7 documents
Covering and differentiation
1995
Actions de tores algébriques sur des corps de caractéristique zéro
2023
Over an algebraically closed field of characteristic zero, normal affine varieties endowed with an effective torus action were described by Altmann and Hausen in 2006 by a geometrico-combinatorial presentation.Using Galois descent tools, we extend this presentation to the case where the ground field is an arbitrary field of characteristic zero. In this context, the acting torus may be non split and may have non-trivial torsors, thus we need additional data to encode such varieties. We provide some situations where the generalized Altmann-Hausen presentation simplifies. For instance, if the acting torus is split, we recover mutatis mutandis the original Altmann-Hausen presentation. Finally, …
Local structure of s-dimensional sets and measures
1995
Three viewpoints on the integral geometry of foliations
1999
We deal with three different problems of the multidimensional integral geometry of foliations. First, we establish asymptotic formulas for integrals of powers of curvature of foliations obtained by intersecting a foliation by affine planes. Then we prove an integral formula for surfaces of contact of an affine hyperplane with a foliation. Finally, we obtain a conformally invariant integral-geometric formula for a foliation in three-dimensional space.
Quantum tomography and nonlocality
2015
We present a tomographic approach to the study of quantum nonlocality in multipartite systems. Bell inequalities for tomograms belonging to a generic tomographic scheme are derived by exploiting tools from convex geometry. Then, possible violations of these inequalities are discussed in specific tomographic realizations providing some explicit examples.
General measure theory
1995
Euclidean geometry and physical space
2006
It takes a good deal of historical imagination to picture the kinds of debates that accompanied the slow process, which ultimately led to the acceptance of non-Euclidean geometries little more than a century ago. The difficulty stems mainly from our tendency to think of geometry as a branch of pure mathematics rather than as a science with deep empirical roots, the oldest natural science so to speak. For many of us, there is a natural tendency to think of geometry in idealized, Platonic terms. So to gain a sense of how late nineteenth-century authorities debated over the true geometry of physical space, it may help to remember the etymological roots of geometry: “geo” plus “metria” literall…